Biodiesel Co-Product (BCP) Decreases Soil Nitrogen (N) Losses to Groundwater

نویسندگان

  • M. A. Redmile-Gordon
  • E. Armenise
  • P. R. Hirsch
  • P. C. Brookes
چکیده

This study compares a traditional agricultural approach to minimise N pollution of groundwater (incorporation of crop residues) with applications of small amounts of biodiesel co-product (BCP) to arable soils. Loss of N from soil to the aqueous phase was shown to be greatly reduced in the laboratory, mainly by decreasing concentrations of dissolved nitrate-N. Increases in soil microbial biomass occurred within 4 days of BCP application-indicating rapid adaptation of the soil microbial community. Increases in biomass-N suggest that microbes were partly mechanistic in the immobilisation of N in soil. Straw, meadow-grass and BCP were subsequently incorporated into experimental soil mesocosms of depth equal to plough layer (23 cm), and placed in an exposed netted tunnel to simulate field conditions. Leachate was collected after rainfall between the autumn of 2009 and spring of 2010. Treatment with BCP resulted in less total-N transferred from soil to water over the entire period, with 32.1, 18.9, 13.2 and 4.2 mg N kg-1 soil leached cumulatively from the control, grass, straw and BCP treatments, respectively. More than 99 % of nitrate leaching was prevented using BCP. Accordingly, soils provided with crop residues or BCP showed statistically significant increases in soil N and C compared to the control (no incorporation). Microbial biomass, indicated by soil ATP concentration, was also highest for soils given BCP (p < 0.05). These results indicate that field-scale incorporation of BCP may be an effective method to reduce nitrogen loss from agricultural soils, prevent nitrate pollution of groundwater and augment the soil microbial biomass.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems

Nitrogen (N) requirements of rice crop are met from both the soil and fertilizers. Because of acute N deficiency in most rice soils, fertilizer N must be applied to meet the crop demand. N fertilizer applied to rice crops is partially lost through different mechanisms, including ammonia volatilization, denitrification, and leaching. These losses may cause environmental problems such as pollutin...

متن کامل

Modeling Nitrogen in On-site Wastewater Treatment Systems

State regulatory agencies set standards for minimum lot size for homes on onsite wastewater treatment systems (OWTS) based on the expected nitrogen (N) load to groundwater. However, the data to support these standards are sparse. In a recent field study on a clay soil, we developed a two-dimensional model for N treatment. Our objective was to use this model to predict the N treatment for 12 soi...

متن کامل

Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin.

Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire cru...

متن کامل

Maize response to water, salinity and nitrogen levels: soil and plant ions accumulation

In the present study, some nutritional imbalances, specific ion toxicity and yield-ion concentration relationships in maize under water, nitrogen (N) and salinity stresses were assessed. Effect of different levels of irrigation water (I1=1.0ETc+0.25ETc as leaching, I2 =0.75I1 and I3 =0.5I1) as main plot, salinity of irrigation water (S1=0.6, S2= 2.0 and S3=4.0 dS m-1) as sub-plot and N fertiliz...

متن کامل

Impact of bio-fuel co-product modified subgrade on flexible pavement performance

This study explored the feasibility of lignin based biofuel co-product (BCP) for subgrade soil stabilization, and more specifically, its impact on Hot-Mix Asphalt (HMA) pavement performance using the Mechanistic-Empirical Pavement Design Guide (MEPDG). The HMA pavement systems with BCP stabilized subgrade under different traffic and climate conditions were modeled using mechanistic based damage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 225  شماره 

صفحات  -

تاریخ انتشار 2014